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Preface

The seismic resilience of new and existing structures is a key priority for the protection 
of human lives and the reduction of economic losses in earthquake-prone areas. The 
implementation of modern seismic codes for the design of new earthquake-resistant 
buildings and the advances in techniques for the repair and strengthening of existing 
deficient structures have focused on the upgrade of the structural performance of the new 
and existing structures. However, in many cases, it is preferable to mitigate the effects of 
earthquakes by reducing the induced loads in the structures using seismic isolation and 
response control devices. The main principle is that the use of appropriate seismic isola-
tion and response control devices at the base of the structures will offer increased flexibil-
ity and energy absorption characteristics preventing resonance and significantly reducing 
the induced loads and deformations. The reduction of the deformations is also one of the 
main reasons for using these methods in cases of buildings with special requirements such 
as limited induced displacements in case of earthquakes (e.g. museums, hospitals, preci-
sion instruments and other equipment sensitive to displacements and accelerations etc.).

The use of seismic isolation and response control systems has become a quite popular 
technique not only for the design of new but also for the upgrade of existing structures. 
Various systems have been developed, and some limited information is also included in 
modern seismic codes for the design of new buildings with seismic isolation. However, 
the limited expertise on the selection of the appropriate system and its design for new 
and existing structures is the main challenge for practitioners and hinders the exten-
sive use of seismic isolation and response control systems in practice. This is even more 
challenging for the application of these systems in existing structures where additional 
practical difficulties during the installation process are to be anticipated. The selection of 
the appropriate system depends on a large number of parameters, including the require-
ments and the particular characteristics of the examined structures. The engineers need 
to consider various possible systems, and the selection of the appropriate technology as 
well as the design process is in many cases a process with many iterations and alternatives.

The first part of this document is focused on the collection of the most commonly 
used seismic isolation and response control systems and the critical evaluation of the 
main characteristics of these systems. Then a comparison of the key parameters of the 
design processes for the design of new buildings with seismic isolation is presented, fol-
lowed by four case studies from New Zealand, Greece, and Mexico and one case study 
on response control systems from Japan. The application of seismic isolation systems and 
response control systems for the retrofitting of existing structures were also examined. 
Two case studies on the application of seismic isolation systems in Turkey and Greece are 
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presented, followed by three case studies on the application of response control systems 
in existing structures in Japan, Turkey and New Zealand. Finally, post-earthquake survey 
observations from seismic isolated structures are described to evaluate the efficiency of 
the application of these systems. 

The main aim of this document is to provide a practical guide for the selection of 
seismic isolation and response control systems and explain the main steps of the design 
and application process. This work has been conducted as one of the main tasks of IABSE 
Task Group 1.1 ‘Improving Seismic Resilience of Reinforced Concrete Structures’, which 
is part of Commission 1 ‘Performance and Requirements’. 

This work was coordinated by the IABSE Task Group 1.1 Chairman Dr Andreas 
Lampropoulos (Editor) and presents a teamwork of the following members (listed in 
alphabetical order): Dr Eftychia Apostolidi, Professor Stephanos Dritsos, Mr Christos 
Giarlelis, Professor Jose Jara. Professor Fatih Sutcu, Professor Toru Takeuchi and Dr Joe 
White.

Chapter 1 (Introduction) was led by Professor Stephanos Dritsos and Chapters 2 
(Seismic Isolation and Response Control Systems), 3.1 (Design of New Buildings with 
Seismic Isolation), and 3.2 (Basics of Seismic Isolation Design) were led by Professor 
Fatih Sutcu, Professor Toru Takeuchi and Mr Christos Giarlelis. Mr Christos Giarlelis 
also led the preparation of the three case studies in Greece. Professor Jose Jara led the 
preparation of the case study in Mexico. Professor Fatih Sutcu led the preparation of the 
two case studies in Turkey. Professor Toru Takeuchi led the preparation of the two case 
studies in Japan. Dr Joe White led the preparation of the two case studies in New Zealand. 
Dr Eftychia Apostolidi worked on the enhancement and completeness of the main part of 
the document. All the authors of the list contributed to various sections of this document 
which represents the outcome of a collective effort.

The Editor would like to express his appreciation and sincere thanks to the reviewers, 
Prof. Fabrizio Palmisano (Chief Reviewer, Editorial Board), Prof. Alberto Pavese and Asst. 
Prof. Bahadir Sadan, for their comprehensive and valuable comments and suggestions.

Finally, the Editor would like to express his gratitude to the Chair of IABSE Commis-
sion 1, Mr Niels Peter Hoj, and the Chair of the Bulletin Board, Dr Harsha Subbarao, for 
their continuous encouragement and support during the preparation of this document.

Dr Andreas Lampropoulos
(Editor)
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Chapter 1

Introduction

Traditionally, the design of structures has steadily followed the safety verification rule 
that, in any element of the structure, the design action effects should be lower than the 
respective resistance. Until now, the above verification is mainly performed in terms of 
forces. This so-called Force-Based Design has been the main design procedure adopted in 
our codes. Based on this approach, the safety of the whole structure can only be ensured 
when safety verification criteria are satisfied for all the elements of the structure without 
investigating the performance of the structure when the capacity of one or more structural 
elements is exceeded.

In the last 25 years, the engineering community has adopted the concept of displace-
ment-based design, in which the safety verification is performed in terms of displace-
ments not only of the members but also of the structure as a whole. Moreover, since the 
displacements are determined, the functionality of the structure can be verified as well.

Recently, the idea to integrate verification for safety, integrity, stability and functionality 
of a structure in a holistic way, through global verification criteria, for a set of earthquake 
scenarios has gained more and more ground/attention. The contribution of each element 
to the whole performance of the structure is considered, but, in general, there is no need to 
verify the integrity of each one of them, accepting a level of damage depending on the im-
portance of the examined structure. This has been now introduced in the codes, using spe-
cific performance or damage levels where the relevant losses are addressed to the structure 
as a whole. Displacement-based design is a breakthrough approach for seismic engineering.

However, the increased needs of the modern overdeveloped and overpopulated so-
cieties and the alarming consequences of extreme events (e.g. earthquakes) can lead to 
a significant amount of fatalities and depleting resources and the subsequent collapse of 
the society. Therefore, there is an urgent need for the development of a ‘resilient’-based 
approach.

A key factor for the development of this approach is the consideration and quan-
tification of a wide range of direct and indirect losses. The engineering community is 
traditionally focused mostly on the repair and reconstruction costs after seismic events. 
However, losses of human life, monuments, historic structures, or exhibits in museums 
may have more value than the repair and reconstruction cost of damaged structures. 
In addition to these ‘direct’ consequences, indirect losses should be considered. These 
include not only the economic activity losses due to the inability of the people to continue 
their jobs or to use their houses, but also the diminishment of the quality of their lives. 

Chapter 1 – Introduction

Chapter 1 – Introduc-
tion



 	 5

Chapter 2

Seismic Isolation and Response  
Control Systems

Seismic isolation and response control are seismic protection methods that are used to 
protect structures, non-structural components and contents of buildings from the dam-
aging effects of earthquakes. 

Seismic isolation is a method that is implemented to shift the natural vibration period 
of a structure to the long period range of approximately 2.0~4.0 secs by placing isolation 
bearings usually at the foundation level in order to physically decouple the structure from 
the ground. However, there are exceptions where seismic isolation may be used in the 
upper floors of a structure or that the fundamental period of the isolated structure exceeds 
4.0 secs. The isolation layer consists of horizontally flexible devices that are capable of 
reducing the lateral stiffness of the superstructure combining structure re-centring and 
energy dissipation capability. Energy dissipation in the bearings (or separate dampers 
placed in parallel) can increase the effective damping ratio of the whole system. The result 
is a reduction of the acceleration and shear force response. This approach is most suitable 
for low-to-mid-rise stiff structures where a clear separation between the natural period 
of the flexible isolator bearings and a stiff superstructure minimises the transfer of lateral 
accelerations. In these cases, typically, a seismic isolation system can be designed that 
enables the superstructure to remain elastic even after a Maximum Considered Earth-
quake (MCE) event.

Response control, on the other hand, is a technique where structures are equipped 
with energy dissipating devices that will improve the structural integrity, reduce the dy-
namic responses of the structures or enable the control of higher mode effects during 
dynamic excitations such as seismic events or winds. 

With their given merits, these methods provide the highest possible seismic protection 
for building structures. Often, equally important, damage to non-structural items (par-
titions, ceilings, façades and building services etc.) can be prevented or significantly re-
duced. Furthermore, the contents of the structures are better protected since the induced 
accelerations are lower. When a building and/or its contents are of high importance (such 
as hospitals, data centres, transportation facilities, etc.), seismic isolation and response 
control techniques enable the buildings to remain functional even after a major earth-
quake. Similarly, these techniques can be implemented in industrial buildings, bridge 

Chapter 2 – Seismic Isolation and 
Response Control Systems



 	 27

Chapter 3

Design of New Buildings with Seismic 
Devices

In this chapter, the design of seismic devices for new structures is discussed. The main 
international code provisions are summarised, followed by a description of the basic 
design philosophy and representative case studies.

3.1  Design of New Buildings with Seismic Isolation 
In this section, the basic descriptions of the main design codes and recommendations 
worldwide concerning seismic isolation systems (i.e. Eurocode, ASCE, Japanese, Mexi-
can, and Turkish building codes) are presented.

EN 15129 [41] covers the design of seismic isolation devices that are assembled in 
structures, with the aim of modifying their response to the seismic action. It specifies 
functional requirements and general design rules of the devices for seismic and non-seis-
mic design situations, material characteristics, manufacturing and testing requirements, 
as well as assessment and verification of constancy of performance, installation and 
maintenance requirements. This European Standard covers the most important types of 
devices and their combinations. In EN15129 [41], seismic isolation devices are divided 
into three categories:

1)	 Elastomeric Isolators (Chapter 8.2 of [41]): These are divided into High Damping 
Rubber Bearings (HDRB) and Low Damping Rubber Bearings (LDRB). LDRB 
can include Lead-plug or Polymer plug (LRB or PRB) for achieving the desired 
level of damping.

2)	 Curved Surface Sliders (Chapter 8.3 of [41]): These are friction pendulum system 
(FPS) bearings that dissipate energy by friction and provide a restoring force de-
pending on displacement for re-centring.

3)	 Flat Surface Sliders (Chapter 8.4 of [41]): These sliders should be used with other 
devices that provide re-centring.

According to EN 15129 [41], it is not recommended to use displacement limiting/stop-
ping rings in sliding devices. That is why triple pendulum bearings are not compatible 
with this code.

Chapter 3 – Design of New Build-
ings with Seismic Devices

3.1  Design of 
New Buildings 
with Seismic 
Isolation
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Chapter 4

Seismic Retrofit Using Seismic Isolation 
and Response Control

This chapter presents detailed information on seismic devices for seismic isolation and 
response-controlled systems available for improving the seismic performance of existing 
reinforced concrete structures. 

Facilities such as schools and hospitals have a substantial role in civil protection in 
order to guarantee the continuity of the main services, especially after a major seismic 
event. Therefore, the continuous upgrade and compliance of these buildings to the most 
recent standards is of primary importance to enable the uninterrupted operation of these 
facilities. Recently, the development of innovative materials and subsequent advances in 
seismic isolation and response control systems have led to a continuous improvement 
of seismic protection techniques. These new methods are commonly used in structures 
with structural irregularities both in plan and in height, especially when they are in high 
seismic zones and when there are increased performance requirements.

Seismic retrofit using seismic isolation and response control systems is preferred par-
ticularly for the retrofitting of key buildings such as hospitals, governmental buildings 
or industrial facilities, where re-construction is not an option. These types of innovative 
retrofitting methods can be implemented while the building is in operation.

Many international codes provide a designated chapter for the assessment of existing 
buildings’ structural performance and retrofitting design. However, the design of seismic 
isolation and response control systems is not sufficiently covered in most of these codes, 
and this is one of the main barriers to the implementation of these technologies. ASCE 
41-17 [58], which is a code especially prepared for the seismic evaluation and retrofit of 
existing buildings, includes some provisions for these systems.

Retrofit design using seismic isolation or response control devices is quite similar 
to designing a new building with such devices. The only important difference is that 
the retrofit solution should be tailor-made to suit the already existing structural layout. 
Therefore, each retrofit project with seismic isolation or response control is a unique 
work that requires detailed planning and execution. In the next section, such retrofit 
projects are presented in a consistent format, in which the objective of each project is 
presented, followed by the performance requirements and information about the steps 
of the application.

Chapter 4 – Seismic Retrofit using 
Seismic Isolation and Response 
Control
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Chapter 5

Post-Earthquake Survey Observations

Post-earthquake survey observations and monitoring can provide important informa-
tion about the effectiveness of the examined seismic isolated and response-controlled 
structures. Visual inspection of the buildings is normally conducted after major earth-
quake events. However, the lack of specialised monitoring systems leads, mostly, to qual-
itative observations about the efficiency of the seismically isolated/response-controlled 
structures with limited reliability. Post-earthquake data from monitoring systems in 
these structures can offer valuable information about the effectiveness of the examined 
schemes. In this section, two such cases of buildings in Japan are presented.

5.1  Ishinomaki Red Cross Hospital, Seismically Isolated 
Hospital Building, Ishinomaki, Japan 
Ishinomaki Red Cross Hospital is located in Ishinomaki city, Miyagi prefecture, Japan, 
which is the only hospital designated as a disaster hospital in Ishinomaki medical zone 
(Figure 5.1). In addition to emergency rescue, the hospital was given the role of accepting 
and transporting the sick and injured within the disaster area. The footprint and total 
floor area of the main hospital building are 10,173  m2 and 32,486  m2, respectively. The 
building has seven storeys above the ground level and one floor at the basement, with 
a total height of 26.2  m. The design was performed by Nikken Sekkei Co.Ltd. and the 
contractor was Kajima Corporation. The construction period was from August 2004 to 
June 2006 [69], [72].

The section and plan views of the main building are shown in Figure 5.2(a) and 
(b), respectively, where the location of the isolation systems is indicated. Natural Rubber 
Bearings (NRB) and flat sliding bearings are used as isolation bearings, and U-shape steel 
dampers were also added (Figure 5.2(b)). The natural period of the structure only with 
rubber bearings is 5.39 sec, which is reduced to 3.73 sec, including the equivalent stiffness 
of sliding bearings at a displacement of 490 mm. The total shear force of U-dampers and 
sliders equals almost 5 % of the total building weight.

During the Great East-Japan Earthquake on March 11th 2011, Ishinomaki city re-
corded the ground motion of PGA=633  cm/sec2, and the isolated layer of the building re-
corded a maximum displacement of 260 mm in the east-west direction. This is almost half 

Chapter 5 – Post-Earthquake Survey 
Observations
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Seismic Isolation and Response Control

The seismic resilience of new and existing structures is a key 
priority for the protection of human lives and the reduction of 
economic losses in earthquake prone areas. The modern seismic 
codes have focused on the upgrade of the structural performance 
of the new and existing structures. However, in many cases it is 
preferrable to mitigate the effects of the earthquakes by reducing 
the induced loads in the structures using seismic isolation and 
response control devices. The limited expertise in the selection 
and design of the appropriate system for new and existing struc-
tures is the main challenge for an extensive use of seismic isola-
tion and response control systems in practice.
This document aims to provide a practical guide by presenting 
a collection of the most commonly used seismic isolation and 
response control systems and a critical evaluation of the main 
characteristics of these systems. Comparisons of the key param-
eters of the design processes for new buildings with seismic 
isolation are presented, while the application of seismic isola-
tion systems and response control systems for the retrofitting 
of existing structures is also examined, followed by various case 
studies from Greece, Japan, Mexico, New Zealand, and Turkey.
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