0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

High torque density magnetorheological brake with multipole dual disc construction

Autor(en): ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 4, v. 31
Seite(n): 045022
DOI: 10.1088/1361-665x/ac5860
Abstrakt:

This paper presents a magnetorheological (MR) brake with the intent of overcoming the problems of limited torque density and low manufacturability that conventional MR brakes come across. Firstly, the conceptual design of the proposed MR brake was finalized. High torque density was achieved by using the combined effect of the dual disc-type construction and multipole concept. High manufacturability was attained with a simple and lightweight mechanical construction. It was created with the major components, namely magnetically permeable stator cases, rotor discs, magnetic cores, winding coils, and MR fluid. The computer aided design (CAD) model and analytical models were also developed to study the performance of the proposed brake. Then, the dimensions of the brake were optimized through electromagnetic simulations. Further, the brake performance was simulated using a three-dimensional electromagnetic model. Finally, a prototype of the optimized MR brake was fabricated, and its performance was experimentally validated. It is clear from the computer simulations and experimental test results, that the proposed MR brake has achieved the objective. The maximum torque was 16.5 Nm, and the torque density of 79.3 Nm dm−3 was significantly higher than that of conventional MR brakes. This brake also exhibited a fairly rapid response with a response rate of 90 ms.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/ac5860.
  • Über diese
    Datenseite
  • Reference-ID
    10659946
  • Veröffentlicht am:
    28.03.2022
  • Geändert am:
    28.03.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine